

Vorlesung Industriebetriebswirtschaftslehre

Prof. Dr. rer. pol. Wolf Fichtner

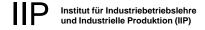
Inhalte der Vorlesung IBWL

Kapitel 1: Einführung

Kapitel 2: Rechtsformen

Kapitel 3: Finanzierung

Kapitel 4: Externes Rechnungswesen


Kapitel 5: Internes Rechnungswesen

Kapitel 6: Investitionsrechnung

Kapitel 7: Optimierung

Kapitel 8: Marketing und Absatz

Kapitel 9: Projektmanagement

Fragestellungen der Investitionsplanung

- Beurteilung von einzelnen Investitionsprojekten
 - Entscheidung, ob eine Investition durchgeführt werden soll.

- Wahl zwischen verschiedenen Investitionsalternativen.
 - Beurteilung verschiedener Investitionsprojekte.
 - Auswahl der besten Alternative auf der Basis eines Entscheidungskriteriums.

Investitionsplanung

- Methoden zur Beurteilung und zum Vergleich verschiedener Investitionsalternativen.
- Entscheidungskriterien für die Beurteilung z.B.

Externe Effekte

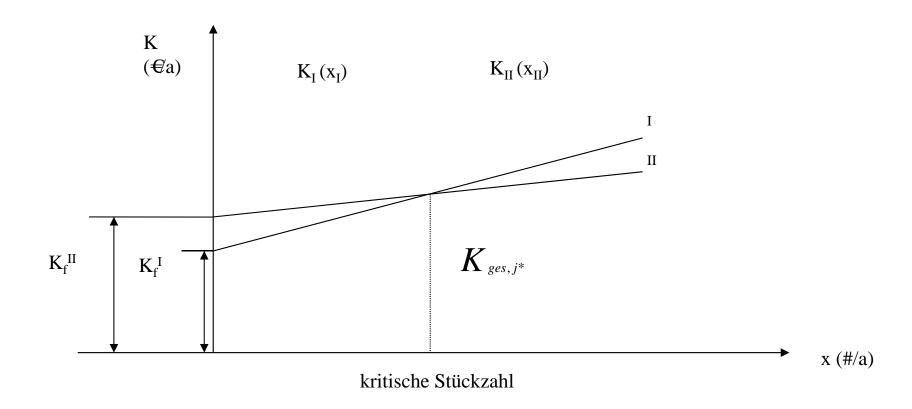
- Ökologische Kriterien (Emissionen/Immissionen),
- Soziale Kriterien (Arbeit, Gesundheit, Sicherheit) und
- Wirtschaftliche Kriterien (Kosten, Return on Investment, Kapitalwert)
- ⇒ Multi-criteria Analyse

Verfahren der Investitionsrechnung

Statische Verfahren

- Kostenvergleichsrechnung
- Gewinnvergleichsrechnung
- Rentabilitätsrechnung (Return on Investment)
- Amortisationsrechnung

Ziele: Kostenminimierung, Gewinnmaximierung,


Rentabilitätsmaximierung

Dynamische Verfahren

- Kapitalwertmethode
- Annuitätenmethode
- Methode des internen Zinsfußes
- Dynamische Amortisationsrechnung

Ziele: Vermögensmaximierung, Einkommensmaximierung

Kostenvergleichsrechnung (KVR)

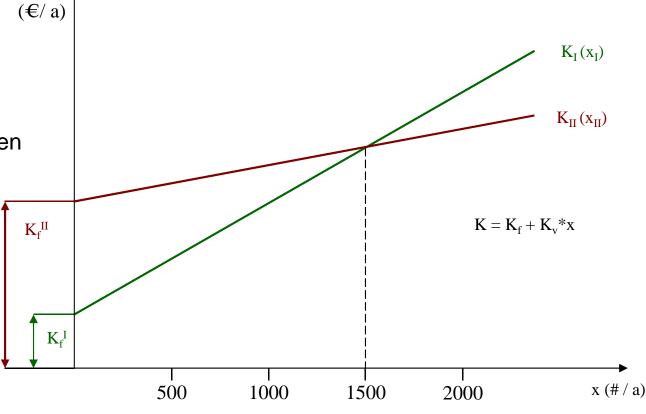
Bei x_{krit} wechselt die Vorteilhaftigkeit von Verfahren I zu Verfahren II:

$$K_{ges,j^*} = \min_{j} (K_{fj} + k_{vj} \cdot x)$$
 (j=1,...,n

Es wird die Alternative mit den geringsten Gesamtkosten gewählt.

Kostenvergleichsrechnung Beispiel

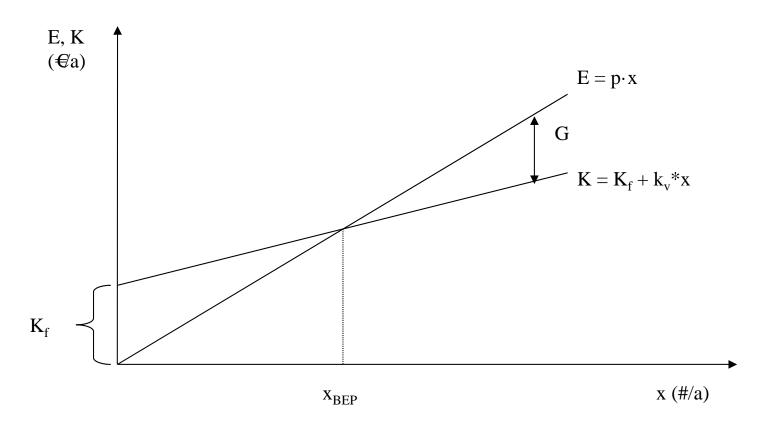
- Es wird eine neue Maschine benötigt
- Es liegen zwei Angebote für zwei Maschinen vor


K

- Maschine 1
 - Niedrige Fixkosten
 - Hohe variable Kosten
- Maschine 2
 - Hohe Fixkosten
 (z.B. höherer Preis wg. höheren
 Automationsgrades,
 d.h. höhere Abschreibungen)
 - Niedrige variable Kosten

Kritischer Punkt: x = 1500

Für x < 1500 => Maschine 1


Für x > 1500 => Maschine 2

Kostenvergleichsrechnung Wichtiger Kritikpunkt

- Nur Kosten, keine Erlöse werden in die Betrachtungen einbezogen
 - Nur anwendbar wenn die Erlöse (Preis * Menge der Leistungseinheiten) für die Alternativen gleich sind.

Gewinnvergleichsrechnung (GVR)

 x_{BEP} : break-even-point (Gewinnschwelle): für $x_i < x_{BEP}$ gilt:

$$G = E - K < 0$$

Für das optimale Projekt gilt: $G_{j^*} = \max(G_j) = \max_j (E_j - K_j)$ (j=1,...,n)

Es wird die Alternative mit dem höchsten Gewinn gewählt.

GewinnvergleichsrechnungBeispiel

- Eine neue Maschine wird benötigt.
- O Es liegen zwei Angebote für unterschiedliche Maschinen vor.

	Machine 1	Machine 2
Fixkosten	30,000 €/ a	25,000 €/ a
Variable Kosten	20 €/#	25 €/#
Erlöse	60 €/#	55 €/#
Erwartete Verkaufsmengen	950 # / a	950 # / a

GewinnvergleichsrechnungBeispiel

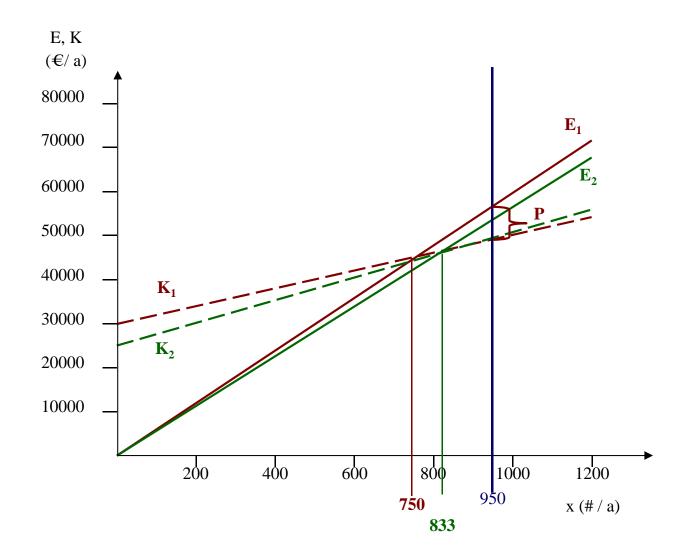
Maschine 1

$$K_1 = 20 \in *x_1 + 30000 \in /a$$

$$E_1 = 60 \in *x_1$$

20 €*
$$x_1 + 30000$$
 €/ $a = 60$ €* x_1
 $x_{BEP1} = 750 x_1 / a$

Gewinn P₁:


$$P_1 = E_{1,x=950} - K_{1,x=950}$$

= 57000 €/ a - 49000 €/ a
= **8000** €/ a

Maschine 2

$$K_2 = 25 *x_2 + 25000 *a$$

$$E_1 = 55 \in * x_1$$

BEP₂:
$$x_{BEP2} = 833 x_2 / a$$

Gewinn P₂:

$$P_2 = E_{2,x=950} - K_{2,x=950} = 52250 € / a - 48750 € / a = 3500 € / a$$

Rentabilitätsrechnung/Rentabilitätsvergleichsrechnung (RVR)

Gesamtkapitalrentabilität:

$$r = \frac{Gewinn + FK - Zins}{Gesamtkapitalbedarf}$$

Eigenkapitalrentabilität:

$$r = \frac{Gewinn}{Eigenkapitalbedarf}$$

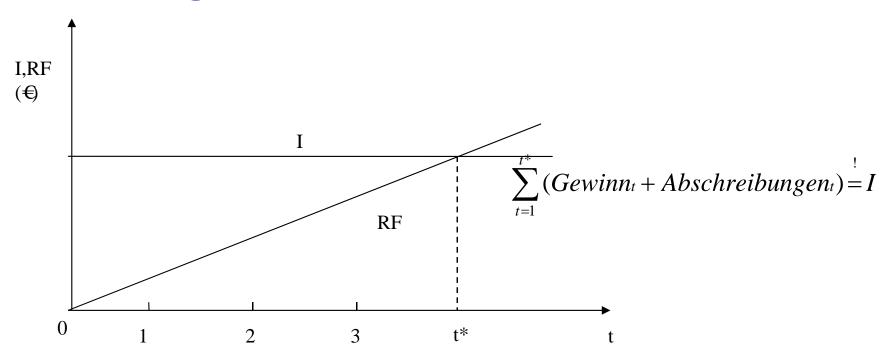
Entscheidungskriterium:

$$r_{GKj}^* = \max_{j} (r_{GKj})$$

Entscheidungskriterium:

$$r_{EKj}^* = \max_{i} (r_{EKj})$$

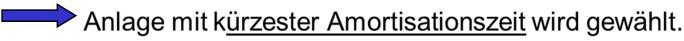
Es wird die Alternative mit der höchsten Gesamtkapital-rentabilität gewählt.


Es wird die Alternative mit der höchsten Eigenkapitalrentabilität gewählt.

Gesamtkapitalrentabilität

Auswahl der Alternative mit dem höchsten Return-on-Investment

- Ziel der Analyse: Wie viel Gewinn kann durch eine Investition unabhängig von der Kapitalquelle - erzielt werden.
 - ⇒ Addition der Fremdkapitalzinsen


Amortisationsrechnung

Amortisationszeit (t*) ist der Zeitpunkt, an dem die Investitionen gerade durch die Rückflüsse gedeckt werden:

$$t^* = \frac{Investitions auszahlung}{R \ddot{u} ckfluss} \quad [\blacktriangleleft]{} = \frac{Kapitaleins atz}{Gewinn + Abschreibungen}$$

Ist (Gewinn + Abschreibung)/a nicht konstant: $\sum_{t=1}^{t^*} (Gewinn_t + Abschreibungen_t) = I$

AmortisationsrechnungBeispiel

	Machine 1	Machine 2
Investitionsauszahlung	300,000 €	250,000 €
Nutzungsdauer	10 Jahre	10 Jahre
Abschreibungen	30,000 €/ a	25,000 €/ a
Gewinn	8,000 €/ a	3,500 €/ a

Machine 1

Machine 2

250,000 €

$$t^* = \frac{250,000}{3,500} = 8,77 \text{ a}$$
3,500 €/ a + 25,000 €/ a

Investitionsrechnung

- Statische Verfahren -

Kostenvergleichsrechnung

- Addition aller Kosten und Vergleich
- ⇒ Investition in die Alternative mit den geringsten Kosten

Gewinnvergleichsrechnung

- Vergleich der Gewinne
- ⇒ Investition in die Alternative mit dem höchsten Gewinn

Rentabilitätsvergleichsrechnung

- Division des Gewinns einer Investition durch das benötigte Kapital
- ⇒ Investition in Alternative mit höchster Rentabilität

Amortisationsrechnung

- Berechnung der Zeit in der die Investition sich durch den Cash Flow gerade amortisiert.
- ⇒ Investition in die Alternative mit der geringsten Amortisationsdauer

Zusammenfassung "Statische Verfahren"

- Betrachtung einer Einzelperiode
- Die Anwendung beschränkt sich auf kleine Projekte, für die sich der Aufwand einer dynamischen Investitionsrechnung nicht lohnt.
- Grundlagen sind Daten aus Kalkulation und Rechnungswesen, so dass mit einfachen Verfahren eine Vorauswahl der möglichen Alternativen durchgeführt werden kann.
- Die Ergebnisse sind ökonomisch wenig aussagekräftig, da viele Annahmen einschränkend wirken und kein zeitlicher Bezug gegeben ist.

Verfahren der Investitionsrechnung

Statische Verfahren

- Kostenvergleichsrechnung
- Gewinnvergleichsrechnung
- Rentabilitätsrechnung (Return on Investment)
- Amortisationsrechnung

Ziele: Kostenminimierung, Gewinnmaximierung,

Rentabilitätsmaximierung

Dynamische Verfahren

- Kapitalwertmethode
- Annuitätenmethode
- Methode des internen Zinsfußes
- Dynamische Amortisationsrechnung

Ziele: Vermögensmaximierung, Einkommensmaximierung

Durchschnittsgrößen

- Kosten
- Erlöse

Jährliche Zahlungen:

- Einzahlungen
- Auszahlungen

Dynamische Verfahren: Vergleich der Zahlungen

- Investitionsentscheidung bei Berücksichtigung mehrerer Perioden
 - Darstellung der Zahlungsströme mit Hilfe von Zahlenreihen:

t	0	1	2	•••	n
	a_0	a ₁	a ₂	•••	a _n

- Methode um Zahlungen in verschiedenen Perioden zu vergleichen wird benötigt
 - z.B.: Vergleiche eine Zahlung von 100 € heute mit einer Zahlung von 250 € im Jahr 2012
- → Zinseszinsrechnung

Einführung in die Zinseszinsrechnung

- Sie haben 100 € und legen diese zu einer Zinsrate von 1% an
- o nach einem Jahr erhalten Sie:
 - Einlage (100 €)
 - Zinsen (1 €)

→ heutiges Geld kann investiert werden um einen Gewinn zu erwirtschaften

Zeitwert des Geldes: Opportunitätskosten des Geldes

Zinseszinsrechnung: Verallgemeinerung

Periode 0: Betrag K₀

nach 1 Jahr: $K_0 + K_0 * i = K_0 (1+i)^1$

nach 2 Jahren: $(K_0 + K_0 * i) + i * (K_0 + K_0 * i)$

$$= (K_0 + K_0 * i) * (1 + i)$$

$$= K_0 * (1+i) * (1+i)$$

$$= K_0(1+i)^2$$

Zinseszinsrechnung: allgemeine Formeln

Aufzinsen

$$K_t = K_0 * (1+i)^t$$

Abzinsen (Diskontieren)

$$K_0 = \frac{K_t}{(1+i)^t}$$

Sonderfälle der Zinseszinsrechnung

Unterjährige Verzinsung

$$K_t = K_0 (1+i/n)^{nt}$$

mit n: Anzahl der Teilperioden

- Stetige Verzinsung kontinuierlicher Zahlungsströme
 - Verzinsung kontinuierlicher Zahlungsströme mit der Verzinsungsintensität f
 → Zinsfuß f/n → Zinsfaktor (1+f/n)^{nt}

$$\lim_{n \to \infty} (1 + \frac{f}{n})^{nt} = \lim_{n \to \infty} (1 + \frac{f/f}{n/f})^{(nf/f)t} = \lim_{n \to \infty} (1 + \frac{1}{n/f})^{(n/f)ft} = e^{ft}$$

gleiches Wachstum bei stetiger und diskreter Verzinsung:

$$(1+i)^t = e^{\overline{f}t} \rightarrow t \cdot \ln(1+i) = \overline{f}t \rightarrow \overline{f} = \ln(1+i)$$

konformer Zinsfuß

Dynamische Verfahren: allgemeine Anmerkungen

Aufzinsen / Abzinsen: Basis zur Anwendung von dynamischen Verfahren

Dynamische Verfahren haben ihren Fokus auf Geldzu- bzw. Geldabflüssen

- Allgemein werden für die dynamischen Verfahren genutzt:
 - Einzahlungen: führen zu einem Zuwachs an Geld (auf der Bank oder in der Kasse)
 - Auszahlungen: führen zu einer Abnahme an Geld

Kapitalwertmethode (Barwertmethode)

(Net Present Value (NPV))

- Darwert: Eine auf den Zeitpunkt t=0 diskontierte Zahlung
- Kapitalwert: Differenz der Summe der Barwerte aller Einzahlungen und der Summe der Barwerte aller Auszahlungen

$$C_0 = \sum_{t=0}^{n} \frac{E_t - A_t}{(1+i)^t} = \sum_{t=0}^{n} \frac{Einzahlung_t - Auszahlung_t}{(1+i)^t}$$

$$C_0 = \int_0^n (E(t) - A(t))e^{-ft}dt \qquad \text{mit n : Nutzungsdauer des Projekts}$$

- \Rightarrow a) Für $c_0(i) > 0$ ist die Investition vorteilhaft und sollte realisiert werden.
 - b) Für $c_0(i) < 0$ ist die Investition nachteilig gegenüber einer Anlage der Mittel am (vollkommenen) Kapitalmarkt.
 - c) Für $c_0(i) = 0$ ist die Investition indifferent gegenüber einer Anlage der Mittel am Kapitalmarkt.
- Es sollte die Alternative mit dem größten Kapitalwert realisiert werden.

Kapitalwertmethode: Beispiel

Periode	0	1	2	3
I ₁	-300 €	100 €	200 €	300 €
	-1000 €	500 €	500 €	500 €
I ₃	100 €	-8 €	-8 €	-108 €

i = 10%

Einfache Projekte

$$C_0 (I_1) = -300 + 100/(1+i) + 200/(1+i)^2 + 300/(1+i)^3$$

$$= -300 + 100/(1.1) + 200/(1.1)^2 + 300/(1.1)^3$$

$$= 181.59 \le > 0$$

$$C_0 (I_2) = 243.43 \le > 0$$

$$C_0 (I_3) = 4.97 \le > 0$$

Erweiterungen der Kapitalwertmethode (Barwertmethode)

 In t=0 nur Investitionszahlung und Schätzung der Zahlungen mittels Rückflüssen

$$C_0 = \sum_{t=1}^n \frac{E_t - A_t}{(1+i)^t} - I = \sum_{t=1}^n \frac{R\ddot{u}ckfl\ddot{u}sse_t}{(1+i)^t}$$
 - Investitionszahlung

Rückflüsse = Gewinn_t + Abschreibung_t (ist konstant)

$$C_0 = -I + (Gewinn + Abschreibungen) \cdot \sum_{t=1}^{n} (1+i)^{-t}$$

= -I + (Gewinn + Abschreibungen) \cdot \frac{(1+i)^n - 1}{(1+i)^n \cdot i}

→ Rentenbarwertfaktor RWF =
$$\frac{(1+i)^n - 1}{(1+i)^n \cdot i}$$

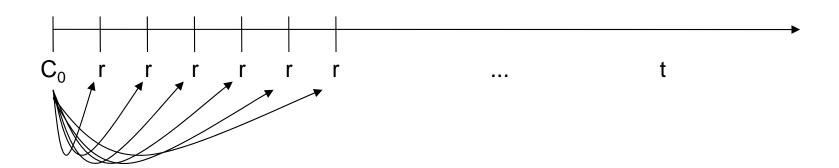
→ Annuitätenfaktor/Wiedergewinnungsfaktor WGF = 1/RWF

Rentenbarwertfaktor

i t	1	2	3	4	5	6	7	8	9	10		15	
1	0.990	0.980	0.971	0.962	0.952	0.943	0.935	0.926	0.917	0.909		0.870	
2	1.970	1.942	1.913	1.886	1.859	1.833	1.808	1.783	1.759	1.736		1.626	•••
3	2.941	2.884	2.829	2.775	2.723	2.673	2.624	2.577	2.531	2.487		2.283	
4	3.902	3.808	3.717	3.630	3.546	3.465	3.387	3.312	3.240	3.170		2.855	
5	4.853	4.713	4.580	4.452	4.329	4.212	4.100	3.993	3.890	3.791		3.352	•••
6	5.795	5.601	5.417	5.242	5.076	4.917	4.767	4.623	4.486	4.355		3.784	•••
7	6.728	6.472	6.230	6.002	5.786	5.582	5.389	5.206	5.033	4.868		4.160	
8	7.652	7.325	7.020	6.463	6.210	5.971	5.747	5.535	5.146	4.968		4.487	•••
9	8.566	8.162	7.786	7.435	7.108	6.802	6.247	6.247	5.995	5.759		4.772	•••
10	9.471	8.983	8.530	8.111	7.722	7.360	7.024	6.710	6.418	6.145		5.019	•••
			•••	•••	•••	•••							
30	25.808	22.396	19.600	17.292	15.372	13.372	12.409	11.258	10.274	9.427	8.694	6.566	
			•••	•••		•••							

Kapitalwertmethode: Beispiel

Periode	0	1	2	3
I ₁	-300 €	100 €	200 €	300 €
	-1000 €	500 €	500 €	500 €
I ₃	100 €	-8 €	-8 €	-108 €


$$i = 10\%$$

$$C_0 (I_2)$$
 = -1000+ 500/(1+i) + 500/(1+i)² + 500/(1+i)³
= -1000+ 500(1/(1.1) + 1/(1.1)² + 1/(1.1)³)
= 243.43 €> 0

$$C_0 (I_2)$$
 = -I + Rückfluss * RBF
= -1000 + 500 * 2.487
= 243.5 € > 0

Annuitätenmethode

- Basiert auf der Kapitalwertmethode
- Vergleich der "durchschnittlichen" jährlichen Auszahlungen der Investition mit den "durchschnittlichen" jährlichen Einzahlungen.
- Umrechnung des Kapitalwerts in uniforme Reihe.

r wird auch Rente genannt!

Annuitätenmethode

Barwert der Rente:

$$C_0 = r(1+i)^{-1} + r(1+i)^{-2} + \dots = r \sum_{t=1}^{n} (1+i)^{-t} = r \cdot \frac{(1+i)^n - 1}{(1+i)^n \cdot i}$$

$$\rightarrow r = C_0 \cdot \frac{(1+i)^n \cdot i}{(1+i)^n - 1} = C_0 \cdot WGF$$
 Wiedergewinnungsfaktor (Annuitätenfaktor)

(Annuitätenfaktor)

Die Annuität der Investition entspricht dem "durchschnittlichen" jährlichen Einzahlungsüberschuss.

Unter mehreren Alternativen wählt man diejenige mit der größten Annuität.

	Zins	Lebens- dauer	Periode 0 [€]	Periode 1 [€]	Periode 2 [€]	Periode 3 [€]	Periode 4 [€]	Periode 5 [€]
I ₁	6 %	5	-10,000	1,000	2,000	3,000	4,000	5,000
	6 %	5	-10,000	5,000	4,000	3,000	2,000	1,000
I_3	6 %	5	-9,000	500	500	1,000	2,000	2,500

1ter Schritt Berechnung des Kapitalwertes

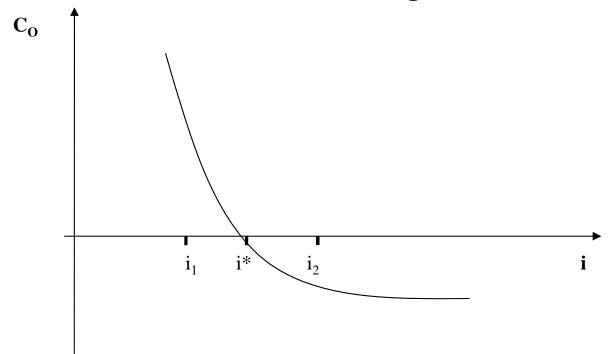
$$C_1 = -10,000 + \frac{1,000}{\left(1.06\right)^1} + \frac{2,000}{\left(1.06\right)^2} + \frac{3,000}{\left(1.06\right)^3} + \frac{4,000}{\left(1.06\right)^4} + \frac{5,000}{\left(1.06\right)^5} = 2146.91 \in$$

$$C_2 = -10,000 + \frac{5,000}{\left(1.06\right)^1} + \frac{4,000}{\left(1.06\right)^2} + \frac{3,000}{\left(1.06\right)^3} + \frac{2,000}{\left(1.06\right)^4} + \frac{1,000}{\left(1.06\right)^5} = 3127.27 \in$$

$$C_3 = -9,000 + \frac{500}{\left(1.06\right)^1} + \frac{500}{\left(1.06\right)^2} + \frac{1,000}{\left(1.06\right)^3} + \frac{2,000}{\left(1.06\right)^4} + \frac{2,500}{\left(1.06\right)^5} = -3791.35 \in$$

2ter Schritt: Berechnung der Annuität

$$r_1 = 2146.91 \cdot \frac{1}{4.212} = 509.13 \in$$


$$r_2 = 3127.27 \cdot \frac{1}{4.212} = 742,47 \in$$

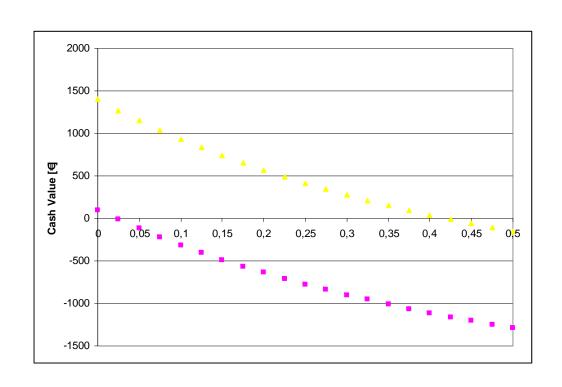
$$r_3 = -3791.35 \cdot \frac{1}{4.212} = -900,13 \in$$

i t	1	2	3	4	5	6	7	8	9	10	 15	
1	0.990	0.980	0.971	0.962	0.952	0.943	0.935	0.926	0.917	0.909	 0.870	
2	1.970	1.942	1.913	1.886	1.859	1.833	1.808	1.783	1.759	1.736	 1.626	
3	2.941	2.884	2.829	2.775	2.723	2.673	2.624	2.577	2.531	2.487	 2.283	
4	3.902	3.808	3.717	3.630	3.546	3.465	3.387	3.312	3.240	3.170	 2.855	
5	4.853	4.713	4.580	4.452	4.329	4.212	4.100	3.993	3.890	3.791	 3.352	
6	5.795	5.601	5.417	5.242	5.076	4.917	4.767	4.623	4.486	4.355	 3.784	
7	6.728	6.472	6.230	6.002	5.786	5.582	5.389	5.206	5.033	4.868	 4.160	
	***	•••	***	•••	***	***	•••	***	***		 •••	

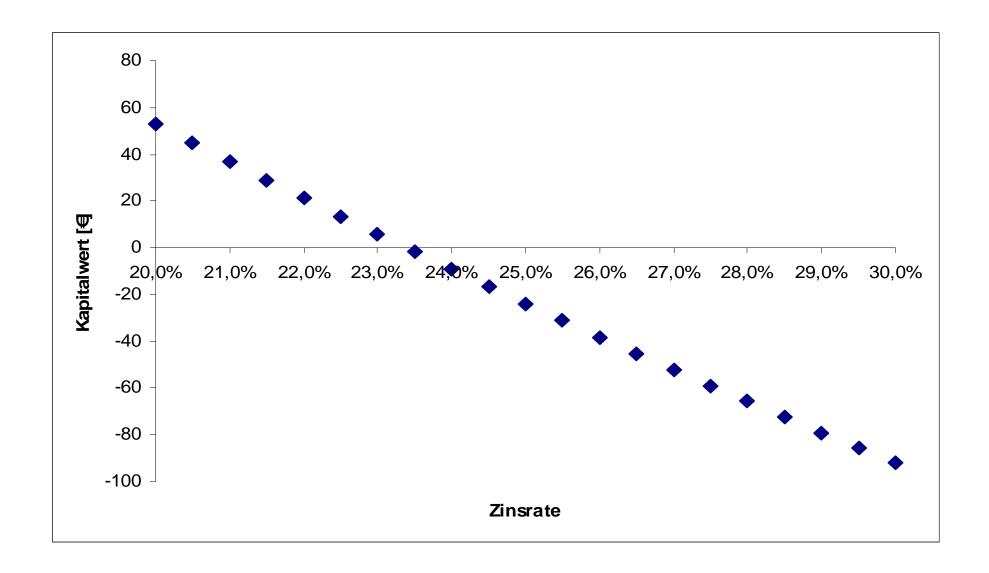
Interne Zinsfußmethode

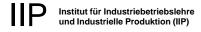
Suche nach einem Diskontierungssatz, bei dem der Kapitalwert 0 ist:

$$C_0 = \sum_{t=1}^n \frac{E_t - A_t}{(1+i)^t} - I = 0$$


Es wird die Alternative mit dem <u>höchsten</u> <u>internen Zinsfuß</u> gewählt (höher als Kalkulationszins).

	Investition (Justallum,)	Einzahlung Periode 1	Einzahlung Periode 2	Auszahlung Periode 1	Auszahlung Periode 2
I ₁	3000 €	2000 €	2500 €	500 €	900 €
I ₂	2000 €	1800 €	2600 €	300 €	700 €


$$\left(\frac{2000 - 500}{(1+i)}\right) + \left(\frac{2500 - 900}{(1+i)^2}\right) - 3000 = 0$$


$$=> i \sim 2\%$$

$$\left(\frac{1800 - 300}{\left(1 + i\right)}\right) + \left(\frac{2600 - 700}{\left(1 + i\right)^2}\right) - 2000 = 0$$

Interne Zinsfußmethode: Grafische Lösung

Dynamische Amortisationszeit

Rückblick: "statische Methode"

$$I = \sum_{t=0}^{t} R \dot{U}_t \longrightarrow t^*$$

"dynamische Methode"

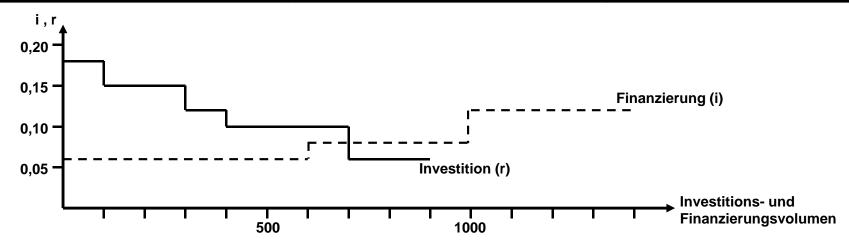
$$I = \sum_{t=0}^{t^{**}} R \dot{U}_t \cdot (1+i)^{-t} \longrightarrow t^{**}$$

I: Investitionsauszahlung

RÜ_t: Rückflüsse, d.h. Einzahlungsüberschüsse

Positive Entscheidung über das Projekt, wenn t** kleiner als die gewünschte Amortisationsdauer ist.

Zusammenfassung "Dynamische Verfahren"

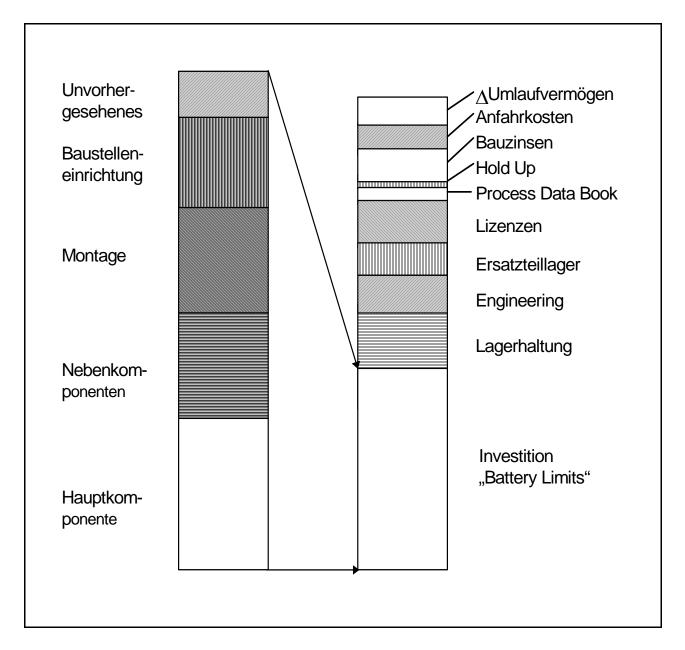

 Annahme: Perfekter (vollkommener) Kapitalmarkt mit einheitlichem Zinssatz i

- Wiederanlageprämisse
 - Während der Laufzeit freiwerdende/zurückfließende Mittel können zum Kalkulationszins (Kapitalwertmethode) bzw. zum internen Zinsfuß (Interne Zinsfußmethode) wieder angelegt werden
- Kapitalwertmethode und Interne Zinsfußmethode können zu unterschiedlichen Empfehlungen führen

Weiterentwicklung: Das Dean-Modell

Investitionsalternativen	Investitionsbetrag A ₀	Interner Zinsfuß r
1	100	0,18
2	200	0,15
3	100	0,12
4	300	0,10
5	200	0,06

Finanzierungsalternativen	Kreditvolumen	Finanzierungskosten i
1	600	0,06
2	400	0,08
3	300	0,12



Investition und Finanzierung im Zahlungstableau

Zeitpunkt	t _o	t ₁	t ₂			
	Investition					
Anschaffungs- auszahlung A ₀	- 1.000					
Einzahlungen E _t		+ 500	+ 900			
Auszahlungen A _t		- 400	- 200			
Liquidations- erlös L _n			+ 600			
Finanzierung						
Kreditaufnahme	Kreditaufnahme bis 1.000 möglich		lich			
Laufzeit	beliebig					
Fremdkapital- zins i	10 %					

Zeitpunkt	Zahlungsvorgang	Betrag
t _o	Geldzufluss Kreditaufnahme	+ 1.000
t _o	Anschaffungsauszahlung A ₀	- 1.000
t _o		0
t ₁	E ₁	+ 500
t ₁	A ₁	- 400
t ₁	Fremdkapitalzinsen	- 100
t ₁		0
t ₂	E ₂	900
t ₂	A ₂	- 200
t ₂	Fremdkapitalzinsen	- 100
t ₂	Liquidationserlös L _n	+ 600
t ₂	Kredittilgung	- 1.000
t ₂		+ 200

Exkurs: Bestandteile einer Investition

Schätzung von Investitionen

Summarische Verfahren der Vorkalkulation

- Spezifische Kapitalbedarfsziffern
- Größendegressionsansatz

$$I = I_0 \cdot \left(\frac{\text{Kapazität}}{\text{Kapazität}_0}\right)^n , \quad 0 \le n \le 1$$

Faktormethoden

- Globale Zuschlagsätze
- Block-/Modulmethoden
- Energetische Kenngrößen
- Differenzierte Zuschlagsätze
- Analytische Zuschlagfaktormethoden

Detaillierte Einzelermittlung

Schätzung von Investitionen

Apparatetyp	KapazMass	GD-Exponent
Rührkesselreaktor	Volumen	0,65-0,70
Elektroofen	El. Leistung	0,80-0,85
Kühlturm	Wasserdurchsatz	0,65
Wärmeaustauscher	Austauschfl.	0,50-0,60
Elektroabscheider	Gasdurchsatz	0,80
Prozess	KapazMass	GD-Exponent
HNO ₃ 55% (druckabhängig)	HNO3. JATO	0,60
Cyclohexan	Prod., JATO	0,87
Phenol (Chlorbenzol- Verf.)	Prod., JATO	0,49

Übungsaufgabe: Investitionsentscheidung (I)

Sie überlegen, eine Anlage zu bauen. Allerdings besteht folgendes Risiko: Im nächsten Jahr steht eine politische Entscheidung an, die die Wirtschaftlichkeit der Investition nachhaltig beeinflussen wird, da sie die Nutzungsdauer der Anlage auf 6 Jahre (Wahrscheinlichkeit für diese Entscheidung p=0,3) begrenzen würde. Ansonsten ist von einer Nutzung der Anlage über 12 Jahre (Wahrscheinlichkeit q=0,7) auszugehen. Bauzeiten sollen nicht berücksichtigt werden.

Investition I = 10.000.000 €

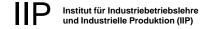
Rückfluss jährlich R_t = 1.500.000 €

Zinssatz i = 7,6%

Beurteilen Sie die Investitionsmöglichkeit

Praxisnahes Beispiel zur Investitionsrechnung

Kauf eines Neuwagens


- Sie planen den PKW nach drei Jahren wieder zu veräußern.
- Sie rechnen mit einem Zinssatz von 4%
- Sie erwarten eine jährliche Laufleistung von 15.000 km.
- Es stehen zwei Varianten zur Auswahl:

Treibstoff	Verbrauch	Anschaffungspreis	Restwert (nach 3 Jahren und 45.000 km)	Steuern und Versicherung
Super	5,8l/100km	18.925€	12.000€	400€/a
Diesel	4,5l/100km	21.125€	15.000€	570€/a

• Sie prognostizieren die Preisentwicklung für Super und Diesel wie folgt:

Treibstoff	2011	2012	2013	Durchschnitt
Super	1,52€/I	1,69€/I	1,73€/I	1,65€/I
Diesel	1,45€/I	1,62€/I	1,66€/I	1,58€/I

Praxisnahes Beispiel für Investitionsrechnung

Kostenvergleichsrechnung

- Jährliche Durchschnittsrechnung
- Durchschnittliche Preise für Super: 1,65€/l und Diesel: 1,58€/l
- Super:
 - Kalkulatorische Abschreibung der Investition: (18.925€–12.000)/3 = 2.308,33€
 - Kalkulatorische Zinsen: ((18.925€ + 12.000)/2) * 0,04 = 618,5€
 - Fixkosten: 400€ (Versicherung und Steuern)
 - Variable Kosten: $15.000 \, km / 100 \cdot 5.8l / 100km \cdot 1.65 \in /l = 1.435.50 \in$
 - → Jährliche Kosten:4.762 €

Diesel

- Kalkulatorische Abschreibung der Investition: (21.125€ 15.000€)/3 = 2.041,66€
- Kalkulatorische Zinsen: ((21.125€ + 15.000€)/2) * 0,04 = 722.5€
- Fixkosten: **5**70€ (*Versicherung und Steuern*)
- Variable Kosten: $15.000 \, km / 100 \cdot 4,5l / 100km \cdot 1,58 € / l = 1.066,50 €$
- → Jährliche Kosten: 4.400 €

Praxisnahes Beispiel für Investitionsrechnung

Kapitalwertmethode

- Jährliche Differenz Einzahlungen Auszahlungen wird diskontiert und aufsummiert.
- $15.000km/100 \cdot 5.8l/100km = 870l$ (675l) Super (Diesel) pro Jahr.
- Es wird die Alternative mit dem größten Kapitalwert C₀ realisiert.

•
$$C_0 = \sum_{t=0}^{n} \frac{E_t - A_t}{(1+i)^t} = \sum_{t=0}^{n} \frac{Einzahlung_t - Auszahlung_t}{(1+i)^t}$$

Super:

$$C_0 = -18.925 \notin + \frac{-870l \cdot 1,52 \notin /l - 400 \notin}{(1,04)^1} + \frac{-870l \cdot 1,69 \notin /l - 400 \notin}{(1,04)^2} + \frac{12.000 \notin -870l \cdot 1,73 \notin /l - 400 \notin}{(1,04)^3} = -13.336,02 \notin$$

Diesel:

$$C_0 = -21.125 \in + \frac{-675l \cdot 1,45 \in /l - 570 \in}{(1,04)^1} + \frac{-675l \cdot 1,62 \in /l - 570 \in}{(1,04)^2} + \frac{15.000 \in -675l \cdot 1,66 \in /l - 570 \in}{(1,04)^3} = -12.320,08 \in$$